
J. Am. Chem. Soc. 1994,116, 3139-3140 3139 

Suprafaciality of Thermal JV-4-Alkenylhydroxylamine 
Cyclizations: Syntheses of (±)-a-Lycorane and 
(+)-Trianthine 

Wolfgang Oppolzer,* Alan C. Spivey, and 
Christian G. Bochet 

Departement de Chimie Organique 
University de Geneve 

CH-1211 Geneve 4, Switzerland 

Received December 20, 1993 

The thermal cyclizations of N-alkenylhydroxylamines (I - • 
IV, Scheme 1), first reported by House et al.1 and independently 
discovered by us,2 have also been described by others.3 This 
reaction was initially proposed to occur via a radical-chain 
mechanism.1 More recently, Ciganek has postulated the retro-
Cope elimination pathway I - • II - • III -»IV in analogy to the 
thermal conversion of TV-alkenyl-iV-methylhydroxylamines to 
cyclic JV-oxides.4 However, compelling proof of either a radical 
or a concerted mechanism for cyclizations I - • IV has not yet 
been presented. 

We report here that the thermally induced cyclization of N-4-
alkenylhydroxylamines (I -* IV) proceeds stereospecifically in 
a suprafacial manner and illustrate the relevance of this result 
in alkaloid synthesis. 

To study the alkene faciality of this process, the (E)- and (Z)-
5,5-disubstituted 4-alkenylhydroxylamines 2 and 4 were prepared 
via C-alkylation of thiazoline I5 with (E)- and (Z)-l-chloro-3-
phenyl-2-butene,6 respectively, followed by thiazoline reduction, 
thiazolidine hydrolysis, aldehyde oximation, and oxime reduction 
(Scheme 2). 

It was gratifying to find that both hydroxylamines 2 and 4 
cyclized smoothly when heated in degassed benzene at reflux 
(18-28 h), providing W-hydroxypyrrolidines 3 and 5, respectively, 
in 81% yield and without cross-contamination (1H-NMR). The 
configurations of cyclization products 3 and 5 were assigned 
unambiguously by X-ray diffraction analysis of the crystalline 
isomer 3 (mp 85-86 0C).7 The relative C(4)/C(5) configurations 
of 3 and 5 correspond to suprafacial formation of the C(4)-N 
and C(S)-H bonds in the ring closure. This lends strong support 
to Ciganek's retro-Cope elimination hypothesis and militates 
against a radical-chain mechanism for intramolecular alkene/ 
hydroxylamine additions. 

Having settled this mechanistic question, we set out to exploit 
this newly found stereospecificity in organic synthesis. 

(1) House, H. 0.; Manning, D. T.; Melillo, D. G.; Lee, L. F.; Haynes, O. 
R.; Wilkes, B. E. J. Org. Chem. 1976, 41, 855. House, H. 0.; Lee, L. F. J. 
Org. Chem. 1976, 41, 863. 

(2) Oppolzer, W.; Siles, S.; Snowden, R. L.; Bakker, B. H.; Petrzilka, M. 
Tetrahedron Lett. 1979, 4391. 

(3) (a) Black, D. St. C; Doyle, J. E. Aust. J. Chem. 1978,31, 2317. (b) 
Lamanec, T. R.; Bender, D. R.; DeMarco, A. M.; Karady, S.; Reamer, R. A.; 
Weinstock, L. M. J. Org. Chem. 1988, 53, 1768. (c) Gravestock, M. B.; 
Knight, D. W.; Thornton, S. R. / . Chem. Soc., Chem. Commun. 1993, 169. 

(4) Ciganek, E. J. Org. Chem. 1990,55,3007. For analogous cyclizations 
of acetylenic hydroxylamines to nitrones, see: Holmes, A. B.; Smith, A. L.; 
Williams, S. F.; Hughes, L. R.; Lidert, Z.; Swithenbank, C. J. Org. Chem. 
1991, 56, 1393. Fox, M. E.; Holmes, A. B.; Forbes, I. T.; Thompson, M. 
Tetrahedron Lett. 1992, 33, 7421. 

(5) Meyers, A. L; Durandetta, J. L. J. Org. Chem. 1975, 40, 2021. 
(6) (£)- and (Z)-l-chloro-3-phenyl-2-butene were prepared by treatment 

of (E)- and (Z)-3-phenyl-2-buten-l-ol with CCl4ZPPh3 in CH2CIj at room 
temperature for 8 h. (£)-3-Phenyl-2-buten-l-ol: Bussas, R.; Muensterer, H.; 
Kresze, G. J. Org. Chem. 1983, 48, 2828. (Z)-3-Phenyl-2-buten-l-ol was 
prepared by y/i-hydromagnesiation/methylation of 3-phenyl-2-propyn-l-ol 
following the procedure of Sato et al.: Sato, F.; Ishikawa, H.; Watanabe, H.; 
Miyake, T.; Sato, M. J. Chem. Soc, Chem. Commun. 1981, 718. 

(7) Bernardinelli, G.; Oppolzer, W.; Spivey, A. C. Acta Crystallogr., 
submitted for publication. 

Scheme 1 

H 3 ° S ^ V R 3 

— .LXR3 
R1 R< 

III 

Scheme 2" 

H O ' 

3 crystalline (X-ray) 

* (a) LDA, (E)- l-chloro-3-phenyl-2-butene, THF, room temperature, 
16 h; (b) (i) Al-Hg, Et20/H20, room temperature, 3 h; (ii) Hg1Cl2, 
MeCN/H20,4:1, room temperature, 1.5 h; (c) NH2OH, EtOH, reflux, 
13 h; (d) NaBH3CN, aqueous MeOH, pH = 3; (e) LDA, (Z)-l-chloro-
3-phenyl-2-butene, THF, room temperature, 16 h. 

We selected as a first target (±)-a-lycorane (9),8 several 
syntheses of which have appeared in the literature (Scheme 3).9 

Cyclohexenylacetaldehyde 6,10 readily available by reduction 
of the corresponding ethyl ester1' with I--Bu2AlH (1 molar equiv, 
-78 0C, toluene), was condensed with hydroxylamine, and the 
resulting oxime was reduced (NaBH3CN, pH = 3) to give 
alkenylhydroxylamine 7 (70% from 6, mp 75-80 0C). Heating 
7 in rigorously degassed mesitylene under argon at 140 0C for 
17 h provided the expected retro-Cope elimination product 8 (mp 
116-118 0C) as a single isomer (1H-NMR) in 83% yield. N,0-
Hydrogenolysis of 8 (Raney-Ni, wet Et2O

12*) and modified Pictet-
Spengler ring closure12b (Eschenmoser's salt, THF, 40 0C, 15 h) 
of the resulting secondary amine afforded (i)-a-lycorane (9, mp 
95-97 0C, 74% from 8). Hence (i)-a-lycorane (9) has been 
prepared from ester 6 by a sequence of six steps in overall 43% 
yield (36% overall from 4-bromo-1,2-(methylenedioxy)benzene), 
which compares very favorably with previous syntheses of 9.9 

More ambitiously, we then addressed the enantiospecific 
synthesis of (+)-trianthine (18) (Scheme 3).13 Following the 
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pioneering work of Hudlicky et al.,14 commercially available 
(lS,2S)-3-chlorocyclohexa-3,5-diene-l,2-diol was converted to 
enantiomerically pure 4-hydroxycyclohexenone 10 (60% overall). 
0-Acetylation of 10 (90%) and efficient deacetoxylation with 
1,1,3,3-tetramethyldisiloxane in the presence of Pd(PPh3J4 (2.5 
mol %, CH2Cl2, reflux, 27 h)15 gave a mixture of a,/3- and J3,y-
unsaturated enones; in situ isomerization with Et3N (1 equiv, 
CH2Cl2, reflux, 1 h), flash chromatography (FC), and crystal­
lization (pentane/AcOEt) yielded pure (S^-enone 11 (66%, 
mp 82—83 0C). Enone 11 underwent smooth 1,2-addition/ 
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alkoxide trapping by successive treatment with (3,4-(methyl-
enedioxy)phenyl)lithium (Et2OyTHF, -78 0C -* 0 0C) and Ac2O 
(0 0C -r room temperature) to give, after FC and crystallization 
(Et2O), allylic acetate 12 as a single stereoisomer (84%, mp 115-
116 0C). /4nn'-selective SN2' substitution of allylic acetate 12 
with vinylmagnesium chloride/CuBr-SMe2 afforded exclusively 
franj-vinylcyclohexene 13 (95%). Hydroboration/oxidation of 
the vinyl group in 13 gave cyclohexenylacetaldehyde 14 (85%), 
which after oximation and oxime reduction (NaBH3CN, pH = 
3) furnished (fra/w-cyclohexenylethyl)hydroxylamine 15 (82% 
from crude 14). 

Hydroxylamine 15 was then subjected to the crucial retro-
Cope elimination step. Heating a 0.01 M solution in degassed 
benzene under argon at reflux for 70 h provided cyclization product 
16 as the only stereoisomer in 93% yield.16 Cleavage of the N-O 
bond in 16 (Raney-Ni, wet Et2O

12"), followed by Pictet-Spengler 
cyclization12b (Eschenmoser's salt, THF, 40 0C, 15 h), gave the 
isopropylidene-protected alkaloid 17 (89% from 16 
(Et20/pentane): mp 155-157 0C; lit.130 di-0-isopropylidene 
zephyranthine mp 156-157 0C). Finally, O-deprotection of 17 
(AcCl, MeOH17) provided (-H)-trianthine (18) (56%, 89% based 
on recovered 17): mp (MeOH) 179-180 0C; lit.13* mp 205-206 
0C; [a]D = 49° (CHCl3, c = 0.26,20 0C; lit.13' [a]D = 51.20).18 

This first enantioselective synthesis of (+)-trianthine (24% 
overall from 10) features the use of a microbiologically derived 
chiral cyclohexadiene diol and a new 7-hydroxy enone deoxy­
genation. Moreover, it highlights the preparative potential of 
suprafacial alkenylhydroxylamine cyclizations which will be 
further explored in our laboratory. 
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